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Qubit measurement by mesoscopic charge detectors has received great interest in the community of meso-
scopic transport and solid-state quantum computation, and some controversial issues still remain unresolved. In
this work, we revisit the continuous weak measurement of a solid-state qubit by single electron transistors
�SETs� in nonlinear-response regime. For two SET models typically used in the literature, we find that the
signal-to-noise ratio can violate the universal upper bound “4,” which is imposed quantum mechanically on
linear-response detectors. This different result can be understood by means of the cross correlation of the
detector currents by viewing the two junctions of the single SET as two detectors. Possible limitation of the
potential-scattering approach to this result is also discussed.
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I. INTRODUCTION

The single electron transistor �SET� is a sensitive charge-
state detector,1–3 which promises the use for fast qubit read-
out in solid-state quantum computation. For single-shot mea-
surement, i.e., in one run the qubit state is unambiguously
determined, an important figure of merit is the detector’s
efficiency defined as the ratio of information-gained time and
the measurement-induced dephasing time.2 In the weakly re-
sponding regime, it was found that the SET has rather poor
quantum efficiency.2,4,5 However, a recent study showed that
for strong response SET the quantum limit of an ideal detec-
tor can be reached, resulting in an almost pure-conditioned
state.6

Rather than the single-shot measurement, a more imple-
mentable approach in experiment is the continuous weak
measurement. This type of measurement allows the ensemble
average of detector and qubit states, and the qubit coherent
oscillation is read out from the spectral density of the detec-
tor. In continuous weak measurement, a remarkable result is
the Korotkov-Averin �K-A� bound, originally with the fol-
lowing statement.7 The interplay between the information ac-
quisition and the backaction dephasing of the oscillations by
the detector imposes a fundamental limit, equal to four, on
the signal-to-noise ratio (SNR) of the measurement. The limit
is universal, e.g., independent of the coupling strength be-
tween the detector and system, and results from the tendency
of quantum measurement to localize the system in one of the
measured eigenstates. In order to overcome the K-A bound,
particular techniques, such as the quantum nondemolition
�QND� measurement,8 the quantum feedback control,9 and
the measurement with two detectors,10 have been proposed.
In this work, we investigate the continuous weak measure-
ment by strongly responding SETs.6,11 Remarkably, we find
that for both models studied in Refs. 6 and 11, the SNR can
violate the universal Korotkov-Averin bound. We can also
provide an interpretation for this different result.

The paper is organized as follows. We begin in Sec. II
with a model description for the measurement setup; then in

Sec. III we turn to the method employed in this work. The
numerical result of the spectral density of the measurement
current is displayed in Sec. IV, and the interpretation for the
K-A bound violation is carried out in Sec. V. Finally, the
summary and concluding remarks are presented in Sec. VI.

II. MODEL

Consider a charge qubit—say—an electron in a pair of
coupled quantum dots, measured by a single electron transis-
tor, as schematically shown in Fig. 1. The entire system is
described by the following Hamiltonian:

H = H0 + H�, �1a�

H0 = HS + �
�=L,R

��kd�k
† d�k, �1b�

HS = �
j=a,b

Ej�j��j� + ���a��b� + �b��a�� + Ecac
†ac + Unanc,

�1c�
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FIG. 1. Schematic model for a solid-state qubit measurement by
SET. Model �I�: the SET dot level is within the bias voltage for
qubit state �b� but outside of it for state �a�. Model �II�: the SET dot
level is between the Fermi levels for either �b� or �a� but with
different coupling strengths to the leads, i.e., �L/R for �b� and �L/R�
for �a�.
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H� = �
�=L,R;k

���kac
†d�k + H.c.� � ac

†�fcL + fcR� + H.c.

�1d�

For simplicity, we assumed spinless electrons. The system
Hamiltonian HS contains a qubit and the SET central dot and
their Coulomb interaction �the U term�. For the qubit, we
assumed that each dot has only one bound state, i.e., the
logic states �a� and �b� with energies Ea and Eb, and with a
coupling amplitude �. na is the number operator of qubit
state �a�, which equals to 1 for �a� occupied and 0 otherwise.
For the SET, ac

† �ac� and d�k
† �d�k� are the electron creation

�annihilation� operators of the central dot and reservoirs. nc
�ac

†ac is introduced as the number operator of the SET dot.
Similar to the previous work, we assumed that the SET
works in the strong Coulomb-blockade regime, with only a
single level Ec involved in the measurement process. Finally,
H� describes the tunnel coupling of the SET dot to the leads,
with amplitudes ��k.

In this work, we consider two SET models as schemati-
cally shown in Fig. 1. In model �I�, which was studied in
Ref. 11, the SET dot level is within the bias voltage if the
qubit is in state �b�, but it locates above the Fermi levels
when the qubit state is switched to �a�. For state �b�, a non-
zero current Ib flows through the SET; however, for state �a�,
the SET current Ia is zero. Then, the qubit state can be dis-
criminated from these different currents. In this model, the
signal current �I��Ib− Ia� is twice the average current Ī
��Ib+ Ia� /2. In this sense, it is not a weak response detector.
In model �II�, which allows to illustrate the crossover from
weak to strong responses, the SET dot level is always be-
tween the Fermi levels of the two leads �for a qubit either in
state �b� or in state �a�� but with different coupling strengths
to the leads, i.e., �L�R� and �L�R�� . For the convenience of
description, we further parametrize the tunnel couplings as

�L��L��= �1�	��̄L, �R��R��= �1�
��̄R, and �= �̄R / �̄L. Here,

�̄L�R�= ��L�R�+�L�R�� � /2 denote the average couplings, while 	
and 
 characterize the response strength of the detector to the
qubit. In this context, we would like to stress that most pre-
vious works were largely restricted in the weak response
regime by assuming 	�1 and 
�1, except in Ref. 6 where
the quantum efficiency was investigated in the strong re-
sponse regime using this model.

III. FORMALISM

In continuous weak measurement, the detector’s output is
characterized by the current and noise spectral density. For
their calculation, the most efficient approach is the particle-
number-resolved master equation.2 In obtaining it, the qubit
and SET dot are regarded as the system of interest, while the
two leads of the SET as an environment; the tunnel coupling
H� of the SET is treated perturbatively as an interaction be-
tween them. Up to the dominant second order of H�, follow-
ing Ref. 12, we have

̇�nR� = − iL�nR� −
1

2
�	ac

†,AcL
�−��nR� − �nR�AcL

�+�
 + ac
†AcR

�−��nR�

+ �nR�AcR
�+�ac

† − 	ac
†�nR+1�AcR

�+� + AcR
�−��nR−1�ac

†
 + H.c.� .

�2�

�nR� is the reduced density operator of the system condi-
tioned on the electron number “nR” tunneled through the
right junction �a similar equation holds also for the left junc-
tion�. For simplicity, throughout this paper we use the con-
vention �=e=kB=1. In Eq. �2� the Liouvillian L is defined
by L�¯�= 	HS ,¯
, and the operators Ac�

����C�
�����L�ac.

The superoperators C�
�����L� are the generalized spectral

functions C�
�����L�=�−�

+�dtC�
����t�e�iLt, where the bath

correlation functions C�
�+��t�= �fc�

† �t�fc��B and C�
�−��t�

= �fc��t�fc�
† �B, and the average �¯�B�TrB	�¯�B
, with B

local thermal equilibrium state of the SET leads determined
by the respective chemical potentials.

Rich information is contained in the above particle-
number-resolved master equation, since the conditional den-
sity matrix �nR��t� is directly related to the distribution func-
tion P�nR , t�=Tr	�nR��t�
, where the trace is over the system
states. For instance, by virtue of this relation, the measure-
ment current can be obtained as12

IR�t� = �
nR

Tr�nṘ�nR��t�� = Re Tr	�ac
†AcR

�−� − AcR
�+�ac

†��t�
 ,

�3�

where �t���nR
�nR��t� satisfies the usual unconditional

master equation, by summing the above Eq. �2� over nR.
In continuous weak measurement, the detector’s power

spectral density contains very useful information of the qu-
bit’s coherent oscillation. Formally, the noise spectrum of the
current consists of three terms:13 S���=�SL���+�SR���
−���2SN���, with SL/R��� the noise of the left �right� junc-
tion current IL/R�t� and SN��� the fluctuations of the electron
number N�t� on the central dot of the SET. � and � are two
coefficients determined by the junction capacitances13 and
satisfy �+�=1. Further, for SL/R���, it follows the Mac-
Donald’s formula:

S���� = 2�
0

�

dt sin �t
d

dt
	�n�

2�t�� − �Īt�2
 , �4�

where Ī is the stationary current and �n�
2�t��

=�n�
n�

2 Tr �n���t�=�n�
n�

2P�n� , t�. In practice, instead of di-
rectly solving P�n� , t�, the reduced quantity �n�

2�t�� can be
obtained more easily by constructing its equation of motion12

based on the particle-number-resolved master equation Eq.
�2�. In this way, we obtain

d

dt
�n�

2�t�� = Tr	2J�
�−�Q��t� + J�

�+�st
 . �5�

Here the particle-number matrix is defined as Q��t�
��n�

n��n���t� and st denotes the stationary state. The su-
peroperators J�

��� are defined by

J�
����¯� =

1

2
	Ac�

�−��¯�ac
† � ac

†�¯�Ac�
�+�

+ ac�¯�Ac�
�−�† � Ac�

�+�†�¯�ac
 . �6�

Inserting Eq. �5� into Eq. �4�, in the frequency domain we
obtain
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S���� = 4� Im�Tr	J�
�−�Q̃����
� + 2 Tr J�

�+�st − 8�Ī2���� ,

�7�

where Q̃����=�0
�Q��t�ei�t. For Q̃����, we can obtain it by

solving a set of algebraic equations after Laplace transform-
ing the equation of motion of Q��t�, as clearly described in
Ref. 13.

For SN���, which is the Fourier transform of the correla-
tion function ��N�t� ,N�0���, following Ref. 13, the quantum
regression theorem gives

SN��� = 2 Re Tr�N	�̃��� + �̃�− ��
� . �8�

�̃��� is introduced as the Laplace transform of ��t�
�TrB	U�t�NstBU†�t�
, where U�t�=e−iHSt. Obviously, ��t�
satisfies the same equation of the reduced density matrix
�t�. The only difference is the initial condition for ��t�,
which is ��0�=Nst.

IV. RESULTS

For both models in Fig. 1, the states involved are �1�
��0a�, �2���0b�, �3���1a�, and �4���1b�. In this notation
�0�1�a�b�� means that the SET dot is empty �occupied� and
the qubit is in state �a�b��. Applying Eq. �2� to model �I�
results in

̇11
�nR� = i�	12

�nR� − 21
�nR�
 + �L33

�nR� + �R33
�nR−1�, �9a�

̇22
�nR� = i�	21

�nR� − 12
�nR�
 − �L22

�nR� + �R44
�nR−1�, �9b�

̇12
�nR� = − i�12

�nR� + i�	11
�nR� − 22

�nR�
 −
�L

2
12

�nR� +
�L

2
34

�nR�

+ �R34
�nR−1�, �9c�

̇33
�nR� = i�	34

�nR� − 43
�nR�
 − ��R + �L�33

�nR�, �9d�

̇44
�nR� = i�	43

�nR� − 34
�nR�
 + �L22

�nR� − �R44
�nR�, �9e�

̇34
�nR� = − i�� + U�34

�nR� + i�	33
�nR� − 44

�nR�


+
�L

2
12

�nR� − ��R +
�L

2
�34

�nR�. �9f�

Here, �=Ea−Eb and �L/R=2���L/R�2gL/R, with gL/R the den-
sity of states of the SET leads. For simplicity, the assumption
of wide-band limit implies �L/R��L/Rk and makes �L/R en-
ergy independent. Also, low temperature and U�� were
assumed to further simplify the equations. Similarly, for
model �II�, we have

̇11
�nR� = i�	12

�nR� − 21
�nR�
 − �L�11

�nR� + �R�33
�nR−1�, �10a�

̇22
�nR� = i�	21

�nR� − 12
�nR�
 − �L22

�nR� + �R44
�nR−1�, �10b�

̇12
�nR� = − i�12

�nR� + i�	11
�nR� − 22

�nR�
 −
�L + �L�

2
12

�nR�

+
�R + �R�

2
34

�nR−1�, �10c�

̇33
�nR� = i�	34

�nR� − 43
�nR�
 + �L�11

�nR� − �R�33
�nR�, �10d�

̇44
�nR� = i�	43

�nR� − 34
�nR�
 + �L22

�nR� − �R44
�nR�, �10e�

̇34
�nR� = − i�� + U�34

�nR� + i�	33
�nR� − 44

�nR�
 +
�L + �L�

2
12

�nR�

−
�R + �R�

2
34

�nR�. �10f�

Except for the conditions leading to model �II�, other param-
eters are the same as above.

In continuous weak measurement of qubit oscillation, the
signal is manifested as a peak in the noise spectrum at the
qubit oscillation frequency 2�, while the measurement ef-
fectiveness is characterized by the SNR, i.e., the peak-to-
pedestal ratio. We denote the noise pedestal by Sp and obtain
it conventionally from S��→��. In Fig. 2 we show the de-
pendence of the SNR on the detector’s configuration symme-
tries.

The result of model �I� is shown in Fig. 2�A�, where we
see that both the tunnel- and capacitive-coupling symmetries
crucially affect the measurement effectiveness. For the effect
of tunnel-coupling asymmetry �R /�L, the basic reason is
that, with the increase of �R /�L, the interaction time of the
detector electron with the qubit is decreased. Thus the detec-
tor’s backaction is reduced and the SNR is enhanced.11 For
the effect of capacitive coupling, its degree of asymmetry
affects the contribution weight of the cross correlation be-
tween IL�t� and IR�t� to the entire circuit noise. Specifically,
the cross correlation has a more important contribution for
more symmetric coupling, as shown in Fig. 2�A� by the �
dependence. This is because, as we shall demonstrate below,
the cross correlation has much higher peak-to-pedestal ratio
than the autocorrelation.

An unexpected feature observed in Fig. 2�A� is that under
proper conditions, say, the symmetric capacitive coupling
and strongly asymmetric tunnel coupling, the SNR can ex-
ceed “4,” which is the upper bound quantum mechanically
limited on any linear-response detectors.7 However, to our
knowledge, whether this upper bound is applicable to a
nonlinear-response detector is so far unclear in priori, since
in this case the linear-response relation between the current

FIG. 2. Signal-to-noise ratio: �A� for model �I� and �B� for
model �II�. For model �I�, we take �L�� as the energy unit and
assume that �L�R�= �50�, �=2�, and U=80�. For model �II�, we

use �̄L� �̄ as the energy unit and assume that �= �̄, U=50�̄, �̄R

=30�̄, and �=�=1 /2. Also, zero temperature and Ea=Eb are
assumed.
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and qubit state breaks down then the subsequent Cauchy-
Schwartz-inequality based argument leading to the upper
bound “4” does not work.10

To support the above reasoning, we further check model
�II�. The result is presented in Fig. 2�B�. As explained in the
model description, the parameters 	 and 
 used here charac-
terize, respectively, the left and right tunnel-coupling re-
sponses to the qubit states. Shown in Fig. 2�B� is for an

asymmetric tunnel-coupling detector, with �� �̄R / �̄L=30,
which can lead to higher SNR, because of the weaker back-
action from the detector, similar to model �I�. Here we find
that the SNR is insensitive to the right junction response, 

but sensitive to the left one, 	. Again, in this model, we
observe that the SNR can violate the K-A bound “4” in the
strong response regime.

V. UNDERSTANDING THE VIOLATION
OF THE K-A BOUND

Since I�t�=�IL�t�+�IR�t�, the current correlator �I�t�I�0��
contains the component SLR�t���IL�t�IR�0�+ IR�t�IL�0��, i.e.,
the cross correlation. In the previous results, we already ob-
served that for more symmetric capacitive coupling the SNR
is larger and reaches the maximum at �=�=1 /2. This fea-
ture indicates that the cross correlation has an effect of en-
hancing the SNR.

Indeed, for the SET detector, both the left and right junc-
tion currents �IL and IR� contain the information of qubit
state, so their “signal” parts are correlated. This leads us to
viewing heuristically the two junctions of a single SET as
two detectors, such as the scheme of qubit measurement by
two quantum point contacts �QPC� proposed recently by Jor-
dan and Büttiker,10 where they found that the SNR of the
cross correlation can strongly violate the K-A bound because
of the negligibly small pedestal of the cross noise. In our
case, since IL�t� and IR�t� are subject to a constraint from
charge conservation, the cross noise background of IL�t� and
IR�t� does not vanish in principle, unlike the two independent
QPC detectors.10 Nevertheless, the pedestal of the cross
noise of the SET is much smaller than that of the autocorre-
lation, which leads to an enhanced SNR in the spectral den-
sity of the total circuit current, and to the violation of the
K-A bound.

In Fig. 3 we plot the signal-to-noise ratio versus the

tunnel-coupling asymmetry �R /�L for model �I� and �̄R / �̄L
for model �II�. To more clearly show the effect of the cross
correlation, in Fig. 3�A� we display the results in the pres-
ence of cross correlation �the solid and dashed lines� and
after removing it �the dotted and dot-dashed lines�. We see
that the former can violate the K-A bound, while the latter
cannot. In Fig. 3�B� we separately plot the SNR of the cross
correlation scaled by the noise pedestal Sp of the entire cir-
cuit current. This illustrates the role of the cross noise in
enhancing the SNR and violating the K-A bound.

In Fig. 4 the spectral density of the cross correlation
scaled by its own noise pedestal is shown representatively.
As mentioned above, since at the high-frequency limit the
cross noise pedestal is negligibly small, here we artificially
�but more physically in some sense� define the pedestal at a

finite frequency, e.g., twice the qubit oscillation frequency.
Obviously, the giant SNR of the cross correlation has drasti-
cally violated the K-A bound. This result indicates that in
qubit measurement by the SET, one can exploit the cross
correlation rather than the auto one as usual to probe the
coherent oscillations. In practice, such a scheme is simpler
than the technique of QND measurement8 and holds the most
advantages of the SET over QPC. In recent years, the cross
correlation in mesoscopic transport is an extensive research
subject. Its measurement in experiment is also possible, for
instance, using the nearby-QPC counting technique.14

VI. CONCLUDING REMARKS

In summary, we have investigated the continuous weak
measurement of qubit oscillations by a nonlinear-response
SET and demonstrated that the signal-to-noise ratio can vio-
late the universal Korotkov-Averin bound. The violation has
been understood by the role of the cross correlation of the
detector’s currents. This interpretation also leads to the use-
ful implication to the experiment.

FIG. 3. Signal-to-noise ratio versus tunnel-coupling asymmetry;

�R /�L for model �I� and �̄R / �̄L for model �II�. In �A� the solid and
dashed lines are the result in the presence of cross correlation, while
the dotted and dot-dashed lines are the result after removing it. In
�B� the mere cross correlation is plotted. Sp is the pedestal noise of
the entire circuit current. 	=
=0.9; other parameters are the same
as in Fig. 2.

FIG. 4. Spectral density of the cross correlation scaled by its
own pedestal, here which is defined at twice the Rabi frequency of
the qubit oscillations. Parameters for model �I� in �A�: �L=0.05�,

�R=0.5�, and �=5�. Parameters for model �II� in �B�: �̄L

=0.05�, �̄R=0.5�, �=5�, and 	=
=0.9. � in this figure is used as
an energy unit; other conventions are the same as in Fig. 2.
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Finally, additional remarks may be relevant to the present
study. In the past decade, qubit measurement by mesoscopic
charge detectors �typically QPC and SET� has received great
interest in the community of mesoscopic transport and solid-
state quantum computation. Owing to the many fundamental
problems underlying, this interesting field is still alive, with
many issues unresolved. For single-shot measurement, atten-
tion was focused on the quantum efficiency. In this context,
theories based on concepts such as information acquisition
and loss, and detector’s backaction, were developed. How-
ever, such study was largely relevant to the QPC detector,
which can be well described by a formal potential-scattering
theory.15–17 For SET detector, the scattering matrix descrip-
tion is not well suited. In fact, the quantum efficiency of the
SET remains a controversial issue.6

For continuous weak measurement of qubit oscillations
based also on the formal potential-scattering approach, the
obtained K-A bound is important for its universal nature, i.e.,
valid for arbitrary linear detectors. For the SET, previous
studies for qubit measurement were largely restricted to
linear-response regime.2 In Ref. 11, the SET �model �I� in
our work� is in fact a strongly responding detector. However,
the SNR was found there to be lower than three, thus leading
to a conclusion that it cannot reach the ideal value “4” of
QPC. In Ref. 10, the key conclusion was that by using two

QPCs the SNR of the cross correlation can drastically violate
the K-A bound. Therefore, the violation of the K-A bound for
a single detector is not at all apparent in priori. Moreover, it
is unclear to us how to apply the potential-scattering theory
to SET detector and how to employ the cross correlation in
that language to interpret the enhancement of SNR. Using
the scattering approach, the nonlinear-response quantum
measurement seems difficult to be handled. We anticipate
that the present work can inspire further efforts on more
general nonlinear-response detectors. To relate the SNR to
quantum efficiency from the information aspect is also of
great interest. In Ref. 10, the conditions of reaching the K-A
bound and reaching the quantum-limited measurement coin-
cide. However, in our recent work on the double-dot SET,18

we found that they are different. Work along this line is in
progress and will be presented in the forthcoming publica-
tion.
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